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So far in FoML

e Intro to ML and Probability refresher
e MLE, MAP and fully Bayesian treatment

e Supervised learning

Linear Regression with basis functions
Bias-Variance Decomposition
Decision Theory - three broad classification strategies

Neural Networks
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e Unsupervised learning
Q. K-Means, Hierarchical, and GMM for clustering
e Kernelizing linear Models

o. Dual representation, Kernel trick, SVM (max-margin classifier)
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For today Tree Based Learning Methods
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Contents are taken from - Intro to Statistical Learning
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Agenda

e I[ree-based methods for
o Regression

o Classification

e |Improvements

o Bagging
o Random Forests

o Boosting
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Tree-based Methods

e |nvolve stratifying or segmenting the input (predictor) space
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Tree-based Methods

e Prediction « mean/mode of the training observations in that

region
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Tree-based Methods

e Splitting rules used for segmenting can be summarized in a tree —»

Decision Trees

YR genfire W devmEe Data-driven Intelligence
Indian Institute of Technology Hyderabad & Learning Lab

- DilL
Ill 2r68ad 0388 dend H0P resoerk I. I




Tree-based Methods

e Simple and useful to interpret

e Jypically not the best in the business

o Can be improved (e.g. bagging, random forests, boosting etc))

o At the cost of interpretability
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Decision Trees for Regression
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Exaomple Problem

e Predicting the baseball players’ (log) salary

e Based on the prior experience (years) and hits (in the past year)
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Predicting the Salary
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Hits <

117.5

5.11

6.00

6.74

Figure credits: Jomes et al. (ISLR)
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Predicting the Salary

Yearsl< 4.5 ® TOp Spllt

o Based on the experience (less than
4.5 years — R))

o Avg. salary for that split is the mean
of the training samples in that
region

o 5107 - e>% thousands of USD

Hits <[117.5

5.11

6.00 6.74
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Predicting the Salary

Years <4.5 e Players above 4.5 years of experience

— right split

e Further, split based on the hits in the
previous year major league

e Lessthan 1175 into second region (R,),
more than that into third region (R,)

. i Hits </117.5
6.00 6.74
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Predicting the Salary

o R :{X | Years<4. 5}
Ry ={X | Years>=4.5, Hits<117.5}
| R3 ={X | Years>=4.5, Hits>=117.5}
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Predicting the Salary

Years; < 4.5
|

Hits <

117.5

5.11

6.00

6.74
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R; ={X | Years<4.5}

Ry ={X| Years>=4.5, Hits<117.5}

R3 :{X Years>=4.5, Hits>=117.5}

Called the ‘terminal nodes or the ‘leaves’ of the
tree. Others where the predictor space is split is
called ‘internal nodes.
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The partitions in the predictor space

Hits
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Interpreting the Tree

1. Experience is the most important factor that determines the salary
o Players with less experience earn less

2. Given that a player is less experienced, the number of hits he made

in the last year play little role in the salary

3. For the experienced players, number of hits made recently affect

their salary. More hits - more salary
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Interpreting the Tree

e Probably an over-simplification of the true relation b/w {Year, Hits}
and Salary
e However the advantage is that it is easier to interpret and has a

nice graphical representation
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Stratification of the Feature Space

Building a Regression Tree

1. Divide the predictor space (i.e set of possible values for X, X,,, ..Xp)

into J distinct and non-overlapping regions (R, R,,..R))
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Stratification of the Feature Space

Building a Regression Tree

2. Forevery RJ., make the same prediction which is the mean of the

response value for training samples in RJ.
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Constructing the Regions Rj

e Could have any shape. But for simplicity we choose high-dim

rectangles
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Constructing the Regions Rj

e Could have any shape. But for simplicity we choose high-dim
rectangles

e The goalisto find boxes R, R, ... R, that minimizes the RSS

O mean response for the training jo ]_.
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Constructing the Regions RJ.

e |nfeasible to consider every possible partition
e Instead take a top-down, greedy approach — recursive binary

splitting
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Constructing the Regions RJ.

e Jop-down: starts at the top of the tree and recursively splits the
predictor space

e Greedy: ot each step, best split is made at that particular step

o rather than looking ahead and picking a split that will lead to a better tree later

@ ) H
2r68ah R0ZBS dapd H0Y PSR I. I ]_,
TRt enfe) Rerm fevmEe Data-driven Intelligence

Indian Institute of Technology Hyderabad & Learning Lab




Constructing the Regions RJ.

Recursive Binary Splitting

e First select the predictor XJ., and then the cutpoint s — leads to a

greatest reduction in RSS
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Constructing the Regions RJ.

Recursive Binary Splitting

R1(3,5) = {X|X; < s} and Ra(j,s) ={X|X; > s}

seek the value of j and s that minimize the equation

Yo wi—r) ) (yi— e,

i: x;€R1(7,8) i: ;€ Ra(7,)
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Constructing the Regions RJ.

Recursive Binary Splitting

e Next we repeat the process: look for the best predictor and best
cutpoint that minimizes the RSS further

e But this time we split one of the two previously identified regions
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Constructing the Regions RJ.

Recursive Binary Splitting

e Continue until a stopping criterion is reached

o E.g., until no region contains more than five observations
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Constructing the Regions RJ.

Recursive Binary Splitting

e Once the regions are identified, prediction is the mean response

of the training samples in that region
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Constructing the Regions RJ.

Recursive Binary Splitting (a 5 region example)

Xy
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Overfitting

e Above procedure may give good predictions on training data
o But likely to overfit
e Thisis because the resulting tree may be too complex
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Overfitting

e Smaller tree with fewer splits might lead to lesser variance and

better interpretation
o At the cost of a little bias
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Overfitting

e One way to achieve this

o build the tree only when the decrease in the RSS due to each split exceeds some
(high) threshold

m Results in smaller trees, but is short-sighted
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Tree Pruning

e Grow a large tree, then prune it back to obtain a subtree
e How to find the best subtree?

o Intuitively, pick the one with min. test/validation error
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Tree Pruning

e Estimating the cross-validation error for every possible subtree is

cumbersome (large number of subtrees are possible)
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Tree Pruning - Cost Complexity Pruning

e Also known as weakest link pruning
e Rather than considering every possible subtree, consider a
sequence of subtrees indexed by a

e Foreachvalueof o, 3 asubtree T C T, s.t. the equation is

miNnimum

> > Wi— i) +alT]
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Tree Pruning - Cost Complexity Pruning

e As we increase a, branches get pruned in a nested fashion

e We can select the value of a from cross-validation
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Tree Pruning - Cost Complexity Pruning

1. Grow large tree using recursive binary splitting

2. Apply cost complexity pruning — obtain a sequence of subtrees
as a function of a

3. Compute the validation (or cross validation) performance and
pick the best a that minimizes the error

4. Return the subtree from step 2 that corresponds to the chosen «
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Baseball Salaries Example

o
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Classification Trees
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Trees for Classification

e Similar to the Regression Trees

e Except, predict a qualitative response
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Prediction in Classification Trees

e The most commonly occurring class of training observations in

the region - Majority voting
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Prediction in Classification Trees

e Along with the class prediction for a terminal node

o class proportions within the regions of terminal nodes

@ ) e
2r68ah R0ZBS dapd H0Y PSR I. I L
TRt enfe) Rerm fevmEe Data-driven Intelligence

Indian Institute of Technology Hyderabad & Learning Lab




Growing a Classification Tree

e Recursive binary splitting

e RSS will not do, a natural alternative is classification error

o Fraction of the training observations in that region (R ) that do not belong to

the most common class

E=1- mgx(ﬁmk)
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Growing a Classification Tree

e Classification error is not very sensitive for tree-growing
o Two more metrics

e GiniIndex and Entropy
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Growing a Classification Tree

e Ginilndex - minimizes the total variance across the K classes

o Referred to as a measure of node purity
m  Small value - node contains predominantly observations from a single

class

K
G = Zﬁmk(l _ﬁmk)
k=1
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Growing a Classification Tree

e Entropy

o Also serves as a measure of node purity
m  Small value - node contains predominantly observations from a single

class

K
D =— Zﬁmk 10g]3mk
k=1l
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Pruning a Classification Tree

e Any of the three metrics caon be used

o classification error might be preferred if prediction accuracy is the goal
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Heart Disease Example

e Binary outcome (Yes or No)
e 13 predictors: Age, Sex, Chol, heart and lung function

measurements etc.
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Heart Disease Example

Th?l:a
T

Ca40.5 Ca<0.5

Slope{ < 1.5 Oldpegk < 1.1

MaxHR|< 161.5 ChestRain:bc Age|< 52 Th¥l:b RestECG < 1
| | | ChestPain:a Yes
Yes No No Yes Yes

No Chol k 244 k0.5

H ! No Yes
MaxHR Yes ,__| ,__l

No No No Yes

RestBP < 157
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Heart Disease Example

© Th§l:a
c = Training :
=== (Cross-Validation
w— Tost
v |
o
b
o
g 9
w
e
o N
gk -
S “Q-p-P~
T E E E E E‘E‘-{‘E‘E‘E‘E MaxHR|< 161.5 Chesthain:be Yoo e
g Lol
I T J No Yes
5 10 15
Tree Size
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Some Notes

e [rees can be constructed in the presence of qualitative variable
o E.g.Sex and Thal variables
e Some of the splits yield two terminal nodes that have the same

predicted value
o RestECG<T

o  Why? — leads to increased node purity (all 9 of right split observations has a

response of yes, whereas //11 of left split observations have Yes response)
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Trees vs. Linear Models
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Trees vs. Linear Regression

M p
f(X): Zcm'l(XERm) f(X):z80+ZXJaBJ
m=1 g=1
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Trees vs. Linear Regression

e Which model is better?
o Depends on the problem at hand
e |[f the relationship between the features and response is well approximated by the
linear model
o LRis likely to work better (RT does not exploit the linear structure)
e If thereis a highly nonlinear and complex relationship

o Decision Trees may outperform the classical methods
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Trees vs. Linear Regression

o o
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x ©
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Advantages of Trees

e \ery easy to explain to people
o Some believe that they mirror human decision-making

e Can be displayed graphically (even to a non-expert)

e Can handle qualitative variables

o  Without the necessity of dummy variable
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Disadvantages of Trees

e Generally do not have the same level of predictive accuracy than
some of the other techniques

e Can be non-robust

o Small change in data may cause a large change in the final estimated tree
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Next: More powerful prediction models

e Model combination tools
o Bagging and Boosting
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Thank You
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